Spatial distribution of inputs and local receptive field properties of a wide-field, looming sensitive neuron.

نویسندگان

  • Holger G Krapp
  • Fabrizio Gabbiani
چکیده

The lobula giant movement detector (LGMD) in the locust visual system and its target neuron, the descending contralateral movement detector (DCMD), respond to approaching objects looming on a collision course with the animal. They thus provide a good model to study the cellular and network mechanisms underlying the sensitivity to this specific class of behaviorally relevant stimuli. We determined over an entire locust eye the density distribution of optical axes describing the spatial organization of local inputs to the visual system and compared it with the sensitivity distribution of the LGMD/DCMD to local motion stimuli. The density of optical axes peaks in the equatorial region of the frontal eye. Local motion sensitivity, however, peaks in the equatorial region of the caudolateral visual field and only correlates positively with the dorso-ventral density of optical axes. On local stimulation, both the velocity tuning and the response latency of the LGMD/DCMD depend on stimulus position within the visual field. Spatial and temporal integration experiments in which several local motion stimuli were activated either simultaneously or at fixed delays reveal that the LGMD processes local motion in a strongly sublinear way. Thus the neuron's integration properties seem to depend on several factors including its dendritic morphology, the local characteristics of afferent fiber inputs, and inhibition mediated by different pathways or by voltage-gated conductances. Our study shows that the selectivity of this looming sensitive neuron to approaching objects relies on more complex biophysical mechanisms than previously thought.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Responses of a looming-sensitive neuron to compound and paired object approaches.

The lobula giant movement detector (LGMD) and its target neuron, the descending contralateral movement detector (DCMD), constitute a motion-sensitive pathway in the locust visual system that responds preferentially to objects approaching on a collision course. LGMD receptive field properties, anisotropic distribution of local retinotopic inputs across the visual field, and localized habituation...

متن کامل

Spatiotemporal receptive field properties of a looming-sensitive neuron in solitarious and gregarious phases of the desert locust.

Desert locusts (Schistocerca gregaria) can transform reversibly between the swarming gregarious phase and a solitarious phase, which avoids other locusts. This transformation entails dramatic changes in morphology, physiology, and behavior. We have used the lobula giant movement detector (LGMD) and its postsynaptic target, the descending contralateral movement detector (DCMD), which are visual ...

متن کامل

A fast stimulus procedure to determine local receptive field properties of motion-sensitive visual interneurons

We present a method to determine, within a few seconds, the local preferred direction (LPD) and local motion sensitivity (LMS) in small patches of the receptive fields of wide-field motion-sensitive neurons. This allows us to map, even during intracellular recordings, the distribution of LPD and LMS over the huge receptive fields of neurons sensing self-motions of the animal. Comparisons of the...

متن کامل

The Synaptic and Morphological Basis of Orientation Selectivity in a Polyaxonal Amacrine Cell of the Rabbit Retina.

Much of the computational power of the retina derives from the activity of amacrine cells, a large and diverse group of GABAergic and glycinergic inhibitory interneurons. Here, we identify an ON-type orientation-selective, wide-field, polyaxonal amacrine cell (PAC) in the rabbit retina and demonstrate how its orientation selectivity arises from the structure of the dendritic arbor and the patte...

متن کامل

Looming-sensitive responses and receptive field organization of telencephalic neurons in the pigeon.

The tectofugal pathway in birds goes from the optic tectum to the telencephalic entopallium via the thalamic nucleus rotundus (nRt). This pathway may be homologous to the colliculo-pulvinar-cortical pathway in mammals. It is known that a population of rotundal neurons in the pigeon can signal impending collision of looming objects with the animal. Here we show by single-unit recording that ther...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 93 4  شماره 

صفحات  -

تاریخ انتشار 2005